

William Borucki
Principal Investigator
NASA Ames Research Center
February 25, 2002

SCIENCE TEAM

William J. Borucki, PI, and David Koch, Deputy PI

Stellar Occultations & High-Precision CCD Photometry

- •Timothy Brown, HAO, UCAR
- •Edward Dunham, Lowell Obs.
- •John Geary, SAO
- •Ronald Gilliland, STScI
- •Steve Howell, U. Ariz
- •Jon M. Jenkins, SETI Institute

Doppler Velocity Planet Searches

- •William Cochran, UTexas
- David Latham, SAO
- •Geoff Marcy, U. Cal., Berkeley

Stellar Variability

- •Gibor Basri, U. Cal., Berkeley
- Andrea Dupree, SAO

Dmiter Sasselov, Harvard

Theoretical Studies

- •Jack Lissauer, NASA Ames
- •Alan Boss, Carneige Institute Wash.

Mission Operations

- •Donald Brownlee, U. of Washington
- Yoji Kondo, NASA GSGC

General Overview

- •John Caldwell, York U.
- David Morrison, NASA Ames
- •Tobias Owen, U of Hawaii
- •Harold Reitsema, Ball Aerospace Co.
- •Jill Tarter, SETI Institute

Education and Public Outreach

- •Edna DeVore, SETI Institute
- •Alan Gould, Lawrence Hall of Science

SCIENTIFIC GOALS

- Determine the frequency of terrestrial and larger planets in or near the habitable zone of a wide variety of stellar spectral types
- Determine the distribution of sizes and semi-major axes of these planets
- Identify additional members of each photometrically discovered planetary system using complementary techniques
- Determine the distributions of semi-major axis, albedo, size, and density of short-period giant planets
- Estimate the frequency of planets orbiting multiple star systems
- Determine the properties of those stars that harbor planetary systems

MISSION OVERVIEW

Important Science

- Frequency of Earth-size planets in the habitable zone
- Comparison of solar system with other planetary systems
- Association of planetary systems with stellar types

Low Risk

- No new technology
- Vulcan observations prove analysis software
- Kepler testbed results prove Earth-size transits can be detected
- Single prime contractor

Experienced Organizations

- Ames does science analysis and transit detection
- Ball develops spacecraft and instruments
- Honeywell performs mission operations
- STScl calibrates and archives the data
- SAO selects targets and validates discoveries

Simple Mission

- PI led mission
- Single instrument
- Few moving parts; no selectable gratings, filters, etc.
- No critical maneuvers

MISSION DESIGN

KEPLER: A Wide FOV Telescope that Monitors 100,000 Stars for 4 years with Enough Precision to Find Earth-size Planets in the HZ

Use transit photometry to detect Earth-size planets

- ? 0.95 meter aperture provides enough photons
- ? Observe for several years to detect the pattern

of transits

- ? Monitor stars continuously to avoid missing transits
- ? Use heliocentric orbit

Get statistically valid results by monitoring 100,000 stars

- Use wide field of view telescope
- Use a large array of CCD detectors

21 CCD Modules are the Heart of the Kepler Mission

SCIENCE DRIVER

Statistically valid result for abundance of Earth-size planets in habitable zone

Expected # of planets found, assuming one planet of a given size & semi-major axis per star and random orientation of orbital planes.

RESULTS FROM AN EXTENDED MISSION

Number of Mars- and Earth-sized Planets vs Duration of Observations

OPERATIONS ORGANIZATION

SCHEDULE

Kepler E/PO COMPONENTS

Formal

Informal

Public Outreach

- GEMS Teacher's Guide: "Finding New Worlds"
- FOSS Teacher workshops
- Space Place activities
- Hands On Universe planet-finding for high school
- Kepler-CAM
 (underserved/minority
 colleges)
- Multi-media planetarium program (large dome)
- Interactive planetarium program (small dome)
- Kepler CD-ROM
- ExhibitOrrery Transit Model

- Amateur Astronomers -kit
 - -ephemerides
- Broadcast television program
- STARDATE radio programs

Lessons, simulations — Website — Information, data

PROGRESS OVER PAST YEAR

January 2001: Discovery Program selects the *Kepler* Mission as one of three finalists.

March 2001: Funding received to develop a Concept Study Report.

July 24, 2001: Concept Study Report submitted to NASA HQ.

September 4, 2001: Site review conducted at Ball Aerospace.

December 21, 2001: Discovery Program selects the *Kepler* Mission for Phase B studies.

January 2002: Discussions with HQ to define Phase B funding profile.

February 2002: Funding received to start Phase B studies.

